Machine Learning and Finance: Through the Ages

Tim Savage Senior Managing Economist Principal Data Scientist CBRE

Usual Disclaimer

These are my opinions, and not those of CBRE. Or anyone else.

Some Motivating Examples

Prediction

- Based a training set of labeled objects, what is this unlabeled object?
- Ideally using validation and tuning.
- Always probabilistic: the unlabeled is a zero with probability 98.2%.

Evaluation

- What is the effect of this drug?
- Randomize the unrandomized over a treatment.
- Double-blind experimentation: observation does not affect outcome.
- Ideally probabilistic (but almost always is not).

Similarity (Absent a Biological Model)

• Given some massive genome data, are there "disease" clusters?

• Given my risk appetite and cash constraints, can I make money?

Two Images: You Tell Me

Image One

Image Two

Image One: A One-Dimensional Random Walk

```
random.seed(1234)
pos = 100
walk = [pos] # walk is the array that tracks the random path
nsteps = 10000 # establishs number of random steps
for i in range(nsteps):
    step = 1 if np.random.randint(0, 2) else -1 # Bernoulli draw to step "up" or "down"
    pos += step
    walk.append(pos)
```

Image Two: AAPL (2012)

plt.ylabel('\$', fontsize=16)

```
start, end = "2012-01-01", "2013-01-01"
aapl = web.get_data_yahoo('aapl', start=start, end=end)['Adj Close']
aapl.plot(color = 'darkblue')
plt.title('Apple Share Price (2012)', fontsize=20)
```

Some Background on Modern Finance

- Bachelier (1900) proposes that stock prices are a random walk.
 - Not quite because prices cannot be negative.
 - But changes in prices can be positive or negative.
- As equity markets developed, individual stocks traded on exchanges.
 - Think NASDAQ and tech stocks.
- Emergence of portfolios that include equities, bonds, and cash.
- Diversification is key.
 - Reduce risk for a given level of positive return (positive price changes).

Interesting Use Case for Machine Learning

- But data science requires, among other things, ...
 - Real-world data.
- Data on prices are among the oldest data series that exist.
- Originally, very low frequency.
- Now tick data are generated on the range of a microsecond.
 - Faster than you can click "Like".

Wave One: Theory and Testing

Arbitrage Portfolio Theory (APT)

- Costlessly adjust components of portfolios, relative to a benchmark.
- If true, linear regression may be an ideal representation.
- Slope captures non-diversifiable risk, given the benchmark.
 - Greater or less than one?
- Bias term captures "talent" of active management, given nondiversifiable risk.
 - Greater or less than zero?

Dep. Variable: aapl R-squared: 0.433 Model: OLS Adj. R-squared: 0.433 Method: Least Squares F-statistic: 2114. Wed, 12 Apr 2017 Prob (F-statistic): 0.00 Date: Time: 20:05:56 Log-Likelihood: 7541.1 No. Observations: 2768 -1.508e+04AIC: Df Residuals: 2766 BIC: -1.507e+04Df Model: 1 Covariance Type: nonrobust std err P> t [95.0% Conf. Int.] t coef 0.000 1.898 0.058 -1.89e-05 0.0006 0.001 Intercept 0.022 0.000 0.975 nasdaq 1.0184 45.975 1.062 Omnibus: 463.646 Durbin-Watson: 1,933 0.000 Jarque-Bera (JB): Prob(Omnibus): 8105.015 Skew: 0.209 Prob(JB): 0.00 Kurtosis: 11.373 Cond. No. 73.4

OLS Regression Results

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Wave Two: Prediction

Surely Deep Learning Will Improve on Regression

Give the Machines a Break!

Table 1: CAPM with AAPL Daily Returns			
Model	Run Time ¹	Average MSE ²	Smallest MSE ²
OLS	0.009	0.264	0.209
MLP	8.557	0.274	0.217
LSTM ³	12.170	0.436	0.355
LSTM ⁴	19.064	0.384	0.304

- 1: Average seconds per replication
- 2: 10⁻³
- 3: 30-day window
- 4: 90-day window

Source: Savage and Vo, 2017

Try Something Different: Deploy Bayes

Within This Framework, Examine Something Meaningful

Some Code

```
with pm.Model() as model:
    # alpha, beta, and sigma are the hyperparameters over which we have our priors, in this case t
    hey are flat priors.
    alpha = pm.Normal('alpha', mu=0, sd=20)
    beta = pm.Normal('beta', mu=0, sd=20)
    sigma = pm.Uniform('sigma', lower=0, upper=10)
```

y_est is the specification of the Bayesian model to be estimated. It is simply our CAPM.
y_est = alpha + beta * nasdaq_returns

likelihood is the likelihood function, here it is normal to be used with conjugate priors. likelihood = pm.Normal('y', mu=y_est, sd=sigma, observed=aapl_returns)

```
# We use the Maximum a Posteriori (MAP) values as starting values for the MCMC sampling.
start = pm.find_MAP()
step = pm.NUTS(state=start)
trace = pm.sample(1000, step, start=start, progressbar=True)
```

Some Results

Show results after burn in of 200 MCMC replications.

```
fig = pm.traceplot(trace[199:1000], lines={'alpha': 0, 'beta': 1})
plt.figure(figsize = (10, 10))
```

```
<matplotlib.figure.Figure at 0x115bfbf60>
```


Evaluate Something Meaningful

- What is joint probability that alpha (bias term) is > 0 while beta (slope term) is <= 1?
- In this use case, Bayesian approach allows us to evaluate this directly.
 - Pr(alpha) > 0: 97.2%
 - Pr(beta) <= 1: 19.5%
 - Joint probability: 18.9%
- Implication?

